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Agenda
• Bioinformatics Workflows 

• NF-Core RNAseq Pipeline Setup & Launch

• Nextflow/NF-core

• Amazon Web Services (AWS)

• Memverge

• Lunch 

• Issues, Questions, etc.

• Exploration of the Results

• Next Steps/Questions



Outline
• What is a workflow?  Why do we use them?

• What are the components and concepts of a workflow?

• Example: Bulk RNA-seq



What goes into the complete analysis of a genome-scale 
data set?

(using Bulk RNA-seq as an example)

• Most complex data needs multiple steps to go from raw data to ”answers”

• Example: RNAseq data to Differentially expressed genes
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Workflows are not necessary, but very useful
• Each of the steps is typically executed by a distinct program

• Early steps often must be run separately for each sample in an experiment

• These efforts can be performed manually, but

o Can be tedious and time consuming

o Unnecessary potential source of error or inconsistency

• A workflow system allows for 

o definition of steps and 

o flow of information between the steps 



Workflows (pipelines) solve many issues
• The programmatic steps are run the same way every time.

• The output files can be named and placed in a consistent way

• If log files are generated, you have a record of what was done, including 
parameters and input data

• If you need to run the analysis again, the pieces are in place to do so.

• Reduced work in program installation and maintenance 

o (we will discuss why)



Basic ideas of building a workflow: programs
• At the base level is a single command, which has inputs and generates outputs

• If we understand this, we can incorporate it into a workflow
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Basic ideas of building a workflow: connections
• Workflows are built from multiple steps, with information passed along 
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Basic ideas of building a workflow: connections
• Workflows are built from multiple steps, with information passed along 
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Workflows are best when flexible and adaptable 
• In an ideal and unchanging world, with one set of programs, you would 

o Define your set of steps once and 

o Write a set of scripts that 
• Execute the tools you need  
• Pass the information correctly along

• But-

o Nearly every step has multiple programs that can carry out the function

o The alternative programs can use different parameters and produce different output

• Also-

o Programs change, Libraries change

o Either can break the program or the entire workflow



Basic ideas of building a workflow: wrappers
• Wrappers are programs that act as interfaces, and activate the program in 

“generic” and predictable way
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Basic ideas of building a workflow: Dealing with 
Change Using Containers

• Most programs are not created “from scratch”

• They are instead built from existing “functional components

o System libraries: e.g., compression utilities like Gzip 

o Specialized libraries: e.g., a FASTQ file reader

o The components are loaded and accessed by ”Application Interfaces”

• The components can change or even be deprecated and lost

• Containers provide a means of managing and maintaining functionality



Containers Simplify Software Installation/Maintenance
• A container system is a program that creates protected 

computing environments within a larger computer, 
passes information in and out

• Containers are constructed to include all necessary 
resources to run a specific program

• Benefits:

o Programs with conflicting requirements can be run on the same 
computer by using container-based versions

o Once a container is constructed it can be loaded and run on ANY 
computer that runs the container system

o Repositories of containers are freely available
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Prog1 Prog2

A modern workflow system uses wrappers and 
containers
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Basics of Workflow Systems
• A workflow system consists of

o A language capable of describing the process that captures dependencies and 
computational complexities

o A program (“engine”) capable of
• Reading and executing the workflow description
• Requesting/allocating the necessary computational resources to carry out the work

• The power of these systems is that workflows

o Can be run on any system for which an engine has been programmed and set up

o Can be rerun for new data sets and/or analysis by changing a simple text-formatted 
parameter file



What goes into the complete analysis of a genome-scale 
data set?

(using Bulk RNA-seq as an example)

• Most complex data needs multiple steps to go from raw data to ”answers”

• Example: RNAseq data to Differentially expressed genes
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What goes into the complete analysis of a 
genome-scale data set?

(using Bulk RNA-seq as an example)
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“Rigor and Reproducibility”

• Every choice outlined in the last slide can impact results of analysis

• Recording, monitoring, and sharing these factors is now recognized as critical 
in genomics analysis

o A required aspect of all NIH grant proposals

o Also required by many journals

• Resource:  Karl Broman (Wisconsin) 

o http://kbroman.org/steps2rr/

o http://kbroman.org/dataorg/pages/resources.html

http://kbroman.org/steps2rr/
http://kbroman.org/dataorg/pages/resources.html
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Gene information must be provided (e.g., GFF)



RNA-seq analysis: alignment/quantification



Alternative approaches to Quantification

PostQC 
Sequences

Alignment to 
target

Genome 
Sequences

Genome/Transcriptome 
Annotation

Quantification
Alignment 

file
Expression 

Vector

Alignment-free 
assignment



Data files
(fastq)

QC Alignment Quantification Merge  & 
Normalization

Differential 
Expression 

Analysis

Differentially
Expressed 
Genes Table



After expression is assessed in each sample, 
they are merged into a “count matrix”

gene_name AL_TO_rep01 AL_TO_rep02 AL_TO_rep03 DR_TO_rep01 DR_TO_rep02 DR_TO_rep03

aap-1 753 747 743 940 947 982

aat-1 27 24 14 15 28 14

aat-2 30 33 24 60 65 68

aat-3 134 137 127 78 67 93

aat-4 23 45 35 22 30 27

aat-5 38 33 29 123 84 105

aat-6 40 39 28 41 46 55

aat-7 1 1 0 2 4 6

aat-8 1 1 2 14 3 10

aat-9 362 399 374 370 328 370



After the NF-core: working with your output
• NF-core pipelines generally focus on the standard common analysis step

• Many summary output files are available

• Output tables can become input to other tools 

o RNA-seq analysis with Sequin

o https://sequin.ncats.io/app/

https://sequin.ncats.io/app/


To interpret our count matrix, we need an Experimental 
Design File

• At minimum, the Design File must contain

o Identifiers for each sample (ideally matched to a data filename)

o Assignment of all experimental parameters under consideration to each sample

• Ideally- ANY feature/variable that might vary between samples 
sample treatment rep

AL_TO_rep01 AL rep01

AL_TO_rep02 AL rep02

AL_TO_rep03 AL rep03

DR_TO_rep01 DR rep01

DR_TO_rep02 DR rep02

DR_TO_rep03 DR rep03



In the end, a table of DE Gene Scores (e.g., with DESeq2)
id baseMean log2FoldChange lfcSE stat pvalue padj
aagr-1 269.129364535602 -1.7442675672456 0.117789943380256 -14.8082893767481 1.29494023689411E-49 4.77497892947039E-48

aagr-3 2008.77205021688 -0.150425067741619 0.0418534931952695 -3.59408632965959 0.0003255318965062 0.00115773135585242

aak-2 243.639422569596 0.278051661358966 0.118395785760709 2.34849289248301 0.0188495589454439 0.0458599158655762

aakb-2 415.838439463941 0.561118701249279 0.100734483891487 5.57027424544835 2.54338675055636E-08 1.56247902940004E-07

aakg-1 365.852541550914 0.50046549824763 0.0971820567244253 5.149772654707 2.6080239032197E-07 1.40999077665866E-06

aakg-3 14.7626365586319 1.32753612196484 0.538581116196545 2.46487684406741 0.0137060352076937 0.034635107180592

aakg-4 72.0407425048923 1.73861272918138 0.251164464315594 6.92220825871598 4.44656882831695E-12 3.78784449623833E-11

aakg-5 736.490245516047 -0.171877365357521 0.063262738817093 -2.71688150989571 0.00659001957329092 0.018076559672254

aap-1 846.749244306947 0.216032066870877 0.0694242604499855 3.11176619629258 0.00185971722699245 0.00572240163660642

aars-2 2065.39673387659 0.132015428540962 0.0446828104046726 2.9545014591821 0.0031317467246952 0.00916240085776832

aat-2 45.7630124225589 1.01639572482027 0.300017225171763 3.38779123178136 0.000704578716201275 0.00236338649524766



The end result for all genes (in visual form)
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Summary and concluding thoughts
• Workflows allow for systematic and reproducible execution of complex, 

multi-step analysis of genome-scale data

• Community-supported workflows let you

o Carry out best-in-practice analysis plans

o Reduce effort and potential error 

o Keep track of analysis steps and output for subsequent downstream analysis and 
reporting/publication

• The learning curve is still not trivial

o We can help



Thank 
you!



A typical RNA Seq experiment (and why we need QC)

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html


Computational normalization is critical for 
transcriptome analysis

• Three standard approaches to computational normalization

o Internal normalization (Quantile, VST, FPKM, TPM, etc)
• Assume all samples are roughly the “same,” and force equal distributions
• Insensitive to global changes 

o Internal standard normalization
• Identify a relatively small number of “unchanging” targets and scale all values so that these values are 

equal in all samples

o External standard normalization 
• Add a known control (“Spike-in”) and then scale values such that the values for the controls are the 

same



Community supported workflows:  
NextFlow/NF-core

• https://nf-co.re/

• Nf-core Pipelines are 

o (Mostly) focused on specific data type

o Supported by teams of volunteers

o A systematic way to get systematic execution, logging, and organized output 

o Generally “best-practice” accepted steps

https://nf-co.re/

