
Workflows in the Cloud

Joel H Graber, Director

Comparative Genomics and Data Science Core
MDI Biological Laboratory

02 May 2025

Agenda
• Bioinformatics Workflows

• NF-Core RNAseq Pipeline Setup & Launch

• Nextflow/NF-core

• Amazon Web Services (AWS)

• Memverge

• Lunch

• Issues, Questions, etc.

• Exploration of the Results

• Next Steps/Questions

Outline
• What is a workflow? Why do we use them?

• What are the components and concepts of a workflow?

• Example: Bulk RNA-seq

What goes into the complete analysis of a genome-scale
data set?

(using Bulk RNA-seq as an example)

• Most complex data needs multiple steps to go from raw data to ”answers”

• Example: RNAseq data to Differentially expressed genes

Data
files
(fastq)

QC Alignment Quantification Merge &
Normalization

Differential
Expression

Analysis

Differentiall
y
Expressed
Genes
Table

Workflows are not necessary, but very useful
• Each of the steps is typically executed by a distinct program

• Early steps often must be run separately for each sample in an experiment

• These efforts can be performed manually, but

o Can be tedious and time consuming

o Unnecessary potential source of error or inconsistency

• A workflow system allows for

o definition of steps and

o flow of information between the steps

Workflows (pipelines) solve many issues
• The programmatic steps are run the same way every time.

• The output files can be named and placed in a consistent way

• If log files are generated, you have a record of what was done, including
parameters and input data

• If you need to run the analysis again, the pieces are in place to do so.

• Reduced work in program installation and maintenance

o (we will discuss why)

Basic ideas of building a workflow: programs
• At the base level is a single command, which has inputs and generates outputs

• If we understand this, we can incorporate it into a workflow

MyProgram
Input1

Input2
Input3

Output1

Output2
Output3

Basic ideas of building a workflow: connections
• Workflows are built from multiple steps, with information passed along

MyWorkFlow
Input1

Input2
Input3

Output1

Output2
Output3

Prog1 Prog2

Step1 Step2

Input1 => Step1/Input1

Step1/Output1 => Step2/Input3

Unused/temporary output

Step2/Output2 => Output2

Step1/Output2 => Output3

Basic ideas of building a workflow: connections
• Workflows are built from multiple steps, with information passed along

MyWorkFlow
Input1

Input2
Input3

Output1

Output2
Output3

TrimGalore
(QC)

STAR
(alignment)

Step1 Step2

Input FASTQ seq file

Preprocessed Sequences

Unused/temporary output

Alignment file

TrimGalore log file

Alignment Index

Workflows are best when flexible and adaptable
• In an ideal and unchanging world, with one set of programs, you would

o Define your set of steps once and

o Write a set of scripts that
• Execute the tools you need
• Pass the information correctly along

• But-

o Nearly every step has multiple programs that can carry out the function

o The alternative programs can use different parameters and produce different output

• Also-

o Programs change, Libraries change

o Either can break the program or the entire workflow

Basic ideas of building a workflow: wrappers
• Wrappers are programs that act as interfaces, and activate the program in

“generic” and predictable way

MyProgramInput1

Input2
Input3

Output1

Output2
Output3

P
re

pr
oc

es
si

ng

P
os

tp
ro

ce
ss

in
g

Wrapper or Module

My Other
Program

Input1

Input2
Input3

Output1

Output2
Output3

P
re

pr
oc

es
si

ng

P
os

tp
ro

ce
ss

in
g

Basic ideas of building a workflow: Dealing with
Change Using Containers

• Most programs are not created “from scratch”

• They are instead built from existing “functional components

o System libraries: e.g., compression utilities like Gzip

o Specialized libraries: e.g., a FASTQ file reader

o The components are loaded and accessed by ”Application Interfaces”

• The components can change or even be deprecated and lost

• Containers provide a means of managing and maintaining functionality

Containers Simplify Software Installation/Maintenance
• A container system is a program that creates protected

computing environments within a larger computer,
passes information in and out

• Containers are constructed to include all necessary
resources to run a specific program

• Benefits:

o Programs with conflicting requirements can be run on the same
computer by using container-based versions

o Once a container is constructed it can be loaded and run on ANY
computer that runs the container system

o Repositories of containers are freely available

Operating System

Container
System

Alignment
container

QC
container

Assembly
container

Local Computer

Prog1 Prog2

A modern workflow system uses wrappers and
containers

Step1 Step2

Prog1 Prog2

Module/Wrapper Module/Wrapper

Prog1 Prog2

Container Container

Prog1 Prog2Program Program

Basics of Workflow Systems
• A workflow system consists of

o A language capable of describing the process that captures dependencies and
computational complexities

o A program (“engine”) capable of
• Reading and executing the workflow description
• Requesting/allocating the necessary computational resources to carry out the work

• The power of these systems is that workflows

o Can be run on any system for which an engine has been programmed and set up

o Can be rerun for new data sets and/or analysis by changing a simple text-formatted
parameter file

What goes into the complete analysis of a genome-scale
data set?

(using Bulk RNA-seq as an example)

• Most complex data needs multiple steps to go from raw data to ”answers”

• Example: RNAseq data to Differentially expressed genes

Data
files
(fastq)

QC Alignment Quantification Merge &
Normalization

Differential
Expression

Analysis

Differentiall
y
Expressed
Genes
Table

What goes into the complete analysis of a
genome-scale data set?

(using Bulk RNA-seq as an example)

Data
files
(fastq)

Differentiall
y
Expressed
Genes
Table

QC Alignment Assignment Merge &
Normalization

Differential
Expression

Analysis

Adapter/
primer

sequences

Program
parameters

Program
choice

Genomic
sequences

Program
parameters

Program
choice

Genomic
annotations

Program
parameters

Program
choice

Program
parameters

Program
choice

Program
parameters

Program
choice

“Rigor and Reproducibility”

• Every choice outlined in the last slide can impact results of analysis

• Recording, monitoring, and sharing these factors is now recognized as critical
in genomics analysis

o A required aspect of all NIH grant proposals

o Also required by many journals

• Resource: Karl Broman (Wisconsin)

o http://kbroman.org/steps2rr/

o http://kbroman.org/dataorg/pages/resources.html

http://kbroman.org/steps2rr/
http://kbroman.org/dataorg/pages/resources.html

Data files
(fastq)

QC Alignment Quantification Merge &
Normalization

Differential
Expression

Analysis

Differentially
Expressed
Genes Table

PostQC
Sequences

Alignment to
target

Genome
Sequences

Genome/Transcriptome
Annotation

Quantification
Alignment

file
Expression

Vector

Alignment Approach to Quantification

Gene information must be provided (e.g., GFF)

RNA-seq analysis: alignment/quantification

Alternative approaches to Quantification

PostQC
Sequences

Alignment to
target

Genome
Sequences

Genome/Transcriptome
Annotation

Quantification
Alignment

file
Expression

Vector

Alignment-free
assignment

Data files
(fastq)

QC Alignment Quantification Merge &
Normalization

Differential
Expression

Analysis

Differentially
Expressed
Genes Table

After expression is assessed in each sample,
they are merged into a “count matrix”

gene_name AL_TO_rep01 AL_TO_rep02 AL_TO_rep03 DR_TO_rep01 DR_TO_rep02 DR_TO_rep03

aap-1 753 747 743 940 947 982

aat-1 27 24 14 15 28 14

aat-2 30 33 24 60 65 68

aat-3 134 137 127 78 67 93

aat-4 23 45 35 22 30 27

aat-5 38 33 29 123 84 105

aat-6 40 39 28 41 46 55

aat-7 1 1 0 2 4 6

aat-8 1 1 2 14 3 10

aat-9 362 399 374 370 328 370

After the NF-core: working with your output
• NF-core pipelines generally focus on the standard common analysis step

• Many summary output files are available

• Output tables can become input to other tools

o RNA-seq analysis with Sequin

o https://sequin.ncats.io/app/

https://sequin.ncats.io/app/

To interpret our count matrix, we need an Experimental
Design File

• At minimum, the Design File must contain

o Identifiers for each sample (ideally matched to a data filename)

o Assignment of all experimental parameters under consideration to each sample

• Ideally- ANY feature/variable that might vary between samples
sample treatment rep

AL_TO_rep01 AL rep01

AL_TO_rep02 AL rep02

AL_TO_rep03 AL rep03

DR_TO_rep01 DR rep01

DR_TO_rep02 DR rep02

DR_TO_rep03 DR rep03

In the end, a table of DE Gene Scores (e.g., with DESeq2)
id baseMean log2FoldChange lfcSE stat pvalue padj
aagr-1 269.129364535602 -1.7442675672456 0.117789943380256 -14.8082893767481 1.29494023689411E-49 4.77497892947039E-48

aagr-3 2008.77205021688 -0.150425067741619 0.0418534931952695 -3.59408632965959 0.0003255318965062 0.00115773135585242

aak-2 243.639422569596 0.278051661358966 0.118395785760709 2.34849289248301 0.0188495589454439 0.0458599158655762

aakb-2 415.838439463941 0.561118701249279 0.100734483891487 5.57027424544835 2.54338675055636E-08 1.56247902940004E-07

aakg-1 365.852541550914 0.50046549824763 0.0971820567244253 5.149772654707 2.6080239032197E-07 1.40999077665866E-06

aakg-3 14.7626365586319 1.32753612196484 0.538581116196545 2.46487684406741 0.0137060352076937 0.034635107180592

aakg-4 72.0407425048923 1.73861272918138 0.251164464315594 6.92220825871598 4.44656882831695E-12 3.78784449623833E-11

aakg-5 736.490245516047 -0.171877365357521 0.063262738817093 -2.71688150989571 0.00659001957329092 0.018076559672254

aap-1 846.749244306947 0.216032066870877 0.0694242604499855 3.11176619629258 0.00185971722699245 0.00572240163660642

aars-2 2065.39673387659 0.132015428540962 0.0446828104046726 2.9545014591821 0.0031317467246952 0.00916240085776832

aat-2 45.7630124225589 1.01639572482027 0.300017225171763 3.38779123178136 0.000704578716201275 0.00236338649524766

The end result for all genes (in visual form)

Increased by
treatment

Decreased by
treatment

Increased average
expression

across all samples

Summary and concluding thoughts
• Workflows allow for systematic and reproducible execution of complex,

multi-step analysis of genome-scale data

• Community-supported workflows let you

o Carry out best-in-practice analysis plans

o Reduce effort and potential error

o Keep track of analysis steps and output for subsequent downstream analysis and
reporting/publication

• The learning curve is still not trivial

o We can help

Thank
you!

A typical RNA Seq experiment (and why we need QC)

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

Computational normalization is critical for
transcriptome analysis

• Three standard approaches to computational normalization

o Internal normalization (Quantile, VST, FPKM, TPM, etc)
• Assume all samples are roughly the “same,” and force equal distributions
• Insensitive to global changes

o Internal standard normalization
• Identify a relatively small number of “unchanging” targets and scale all values so that these values are

equal in all samples

o External standard normalization
• Add a known control (“Spike-in”) and then scale values such that the values for the controls are the

same

Community supported workflows:
NextFlow/NF-core

• https://nf-co.re/

• Nf-core Pipelines are

o (Mostly) focused on specific data type

o Supported by teams of volunteers

o A systematic way to get systematic execution, logging, and organized output

o Generally “best-practice” accepted steps

https://nf-co.re/

