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Basics of Gene Expression: the Central Dogma
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What can we measure?

* Nucleic Acid Sequence
* hundreds of millions of reads at 100-150 bases in length
* We mostly sequence as DNA
« Bulk samples (108), single-cell (107)

* Proteins/Metabolomics
* 1000s of fragments per sample

* Question: Why is nucleic acid sequencing easier than protein?
* Answer: because nature did much of the work for us



Seguencing by synthesis
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A conceptual RNAseq experimental workflow
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Image source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



RNA-seq analysis: alignment/quantification
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After expression is assessed in each sample,
they are merged into a “count matrix”

gene id SL94881 SL94882 SL94883 SL94884 SL94885 SL94886
ENSDARG0O0000000001 33 40 36 38 58 40
ENSDARG0O0000000002 136 126 156 167 170 158
ENSDARG0O0000000018 319 356 345 368 357 334
ENSDARG0O0000000019 1174 1390 1430 1356 1130 1237
ENSDARG0O0000000068 522 468 590 622 506 528
ENSDARG0O0000000069 1622 1622 1546 1494 1546 1561
ENSDARG0O0000000086 413 536 474 489 290 476
ENSDARG00000000103 1212 1390 1266 1296 1012 1390

ENSDARG00000000142 118 97 99 110 94 126



Fundamental ideas of transcriptome profiling

* The activity or state of a sample can be defined by a “snapshot”
(profile) of molecules
* |[n a transcriptome, the molecules are the RNA transcripts

* Perturbations/changes to a system induce systemic (and
predictable and reproducible) responses

* Comparison of molecular profiles can
* delineate the mechanisms/pathways involved
* |dentify and classify related samples



Bulk vs Single Cell RNA-seq (scRNA-seq)

Bulk RNA-seq &s .. ’5;;',\, average . Cf)mparat!ve transcriptomics
o expression -« disease biomarker

level * homogenous systems

&g— Population 1

o, &8 — Population 2
scRNA-seq > &4 — Population 3

 define heterogeneity
* identify rare cell population

&4 — Population4 ° cell population dynamics

Slide source: https://www.sambuz.com/doc/introduction-to-single-cell-rna-sequencing-ppt-presentation-754293




® BULK VS SINGLE CELL RNA-SEQ

Average expression level
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Slide source: https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



® BULKVS SINGLE CELL RNA-SEC

1. mBNA: TruSeq RNA-Seq (Gold Standard)
+ ~20,000 transcripts

3. Single Cell Methods

More when consider splice variants / isoforms

- Observe 80-95% of transcripts depending on * 200 -10,000 transcripts per cell

sequencing depth « Observe 10-50% of the transcriptome

« Many transcripts will show up with zero

2. Low input methods ~3000 cells / well COURES T ENGTYOEs. - (Sven GARDE)

* If you only looked at transcripts observed in

» 4000-6000 transcripts per sample _
all cells numbers drop dramatically.

Limiting to transcripts observed across all samples

« Observe 20-60% of the transcriptome

Source: Sarah Boswell, Harvard Medical School, September 2020

Slide source: https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



Good sample
preparation is
key to success!
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Slide source: https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf

WORKFLOW

Single Cell RNA Sequencing Workflow
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Multiple techniques have been developed
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Single Cells in Study

Integrated Fluidic  Liquid Handling

Picowells

Manual Multiplexing e . Nanodroplets In situ barcoding
Circuits Robotics ,
v I e a
= @ O
Tang et al 2009 Islam etal 2011 Brennecke et al 2013 Jaitin etal 2014 Klein et al 2015 Bose etal 2015 Caoetal 2017
Macosko et al 2015 Rosenberg et al 2017
1,000,000 10x Genomics SPLIT-S
100,000 Drop-seq 1oed
d CytoSeq ~ © mDrop Q@ sci-RNA-seq
10,000 MARS-Seq 0 DroNC-Seq
/4 O o
1.000 I o % Qé Seq-Well
’ STRT-Seq CEseq  UdIMCET P o Q)
100 Tang etal O © o © @O
®) 0] \
10 e} o© Smart-seq2
SMART-Seq O
Tang etal
1 o
N o & ™ % © A
S D N N N Q S Q s
R N N I M T S

Study Publication Date
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Capabilities, depth, and characteristics vary among approaches
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Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html
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Next Page

® MORE CELLS OR MORE GENES?

14
;% SMART-seq2 ‘\\
0.754 \
g 054
droplet-RNAseq ??,
—— &
cells )
SMART-seq?2 Droplet-RNAseq e ..
- 100 cells - 10000 cells > 6' — - - —
- Full-length libraries - 50k reads per cell Gene body percentile (%) (5'—3)
- 1M reads per cell - 3'/5 bias
- Required number of cells increases with complexity of the sample.
k3% CANCER - - Number of reads will depend on biology of sample
{ RESEARCH | INSTITUTE - Cell-type classification of a mixed population usually requires lower read depth

bty UK - You can always re-sequence your samples.

Slide source: https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



A conceptual RNAseq experimental workflow
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Image source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



Inside individual GEMs @ Amplified cDNA processing (dual index @

Read 1 UMI Poly(dT)VN TSO
. EEEEE——— [~ B ] |
Read1 1gx UMI Poly(dT)VN m_  —
Barcod : .
A s l Poly(dT) Primer Barcode lEnzymaticFragmentation
3444444
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o —

l Reverse Transcription End Repair, A-tailing, Ligation l

444444“‘ Read 2
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Sampl
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EEE— + Randomer Read (UMI) —
—
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444
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Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



Single Cell 3' v3.1(Dual Index) Gene Expression Library:

Read 1:28
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_
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Image Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



Sequencing is imperfect: Barcodes must be

checked and corrected

Chemistry
10x Chromium Single Cell 3’ v1
10x Chromium Single Cell 3’ v2
10x Chromium Single Cell 3’ v3
10x Chromium Single Cell 3’ v3.1 (Next GEM)
10x Chromium Single Cell 5’ v1.1
10x Chromium Single Cell 5’ v2 (Next GEM)

10x Chromium Single Cell Multiome

CB, bp
14
16
16
16
16
16

16

UMI, bp
10
10
12
12
10
10

12

Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html

Whitelist file
737K-april-2014_rc.txt
737K-august-2016.txt
3M-february-2018.txt
3M-february-2018.txt
737K-august-2016.txt
737K-august-2016.txt

737K-arc-v1.txt



Q. UMI —UNIQUE MOLECULAR IDENTIFIERS

After PCR enrichment, without UMIs, one can not distinguish if multiple copies of a
fragment are caused by PCR clones or if they are real biological duplicated.

By using UMIs, PCR clones can be found by searching for non-unique fragment-UMI
combinations, which can only be explained by PCR clones.

When performing variant analyses, these falsely overrepresented fragments can result in
incorrect calls and thus wrong diagnostic findings

Molecule Type UMIs _ |Reads
I E— —-— s == = = & 6 }
: : : 2 UMIs detected
— — ) — — == 1 UMI missed
: : —

2
1 0
) 7
Sample  \__* \__/ Ubrary ® 5 3 UMIs detected
Label with UMIs Amplify Sequence & Count o 1 1 phantom UMI
ur Pf in 2018)
*1,% CANCER | CAMBRIDGE
by RESEARCH | INSTITUTE

: -’-"M’ UK

Source:https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



Cell 3 Cell 2 Cell 1

Cell 4

Cellular barcode UMl

v v
TTGCCGTGGTGTGGCGGGGA . . . . . v v vv. .. CGGTGTTA ] DDX51
TTGCCGTGGTGTTATGGAGG. . ... ........ ccaceace | NOP2
TTGCCGTGGTGTTCTCAAGT. .. .......... aaaatcee | ACTB
CGTTAGATGGCAGGGCCGGG. . ... ... ..... crcaTacT | | BR
CGTTAGATGGCAACGTTATA. ............ acceeTac | ODF2
CGTTAGATGGCATCGAGATT. . ........... aceceTTT | HIF1A
AAATTATGACGAAGTTTGTA} ............ GGGAATTA ACTB « 2 reads, 1 molecul
readas, 1 molecule
AAATTATGACGAAGTTTGTAf ............ AGATGGGG
AAATTATGACGATGTGCTTG. . . . oo vvrn.. Gacreeac | RPS15
( GTTAAACGTACCCTAGCTGT............. carrrrcT | GTPBP4

GTTAAACGTACCGCAGAAGT. ............ erreeeeT | GAPDH
GTTAAACGTACCAAGGCTTG] ............ CAAAGTTC

j| ARL 1<+ 2reads, 2 molecules
GTTAAACGTACCTTCCGGTC] . ..o oo v vttt TCCAGTCG

...........

...........

(Thousands of cells)



Typical Computational Workflow
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https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Sept22/



Alignment and assignment depend upon gene
knowledge (GFF/GTF)

Gene1  EIEXIYED [_Exon2 [_Exon3
Transcript 1 |
Transcript 2

Transcriptomic
Read

Intronic Read

Antisense
Read

Image Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



Typical Chromium Gene Coverage plots
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Not every droplet is useble

A single happy cell in a droplet is ideal

* Complex transcriptome
* Average number of genes detected

Empty droplet: No cell in a droplet " Floating RNA

* N
o genes detected Dead cell

Droplet with ambient RNA

* Low complex transcriptome
* Genes detected much lower than average genes per cell

Droplet with dead cell
* Enriched for mitochondrial genes

Droplet with multiple cell

* Very complex transcriptome
* Genes detected much higher than average genes per cell

3.8 UNIVERSITY OF 5% cancer | cambridge

g CAMBRIDGE '.'.' EIESEARCH Institute 9/13

Source:https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



UMI counts

Processing tools will catch some of the problematic
barcodes for you

2 I 2 —
100k Cells 100k Cells
5 Background 5 Background
2 2
10k 10k
5 5
)
2 c 2
1000 2 1000
o
5 Q 5
2 < 2
=
100 -] 100
5 5
2 2
10 10
5 5
2 2
1 1
1 10 100 1000 10k 100k 1M 1 10 100 1000 10k 100k 1M
Barcodes Barcodes
Cell Ranger 2.2 Cell Ranger 3.0

Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



Typical OC data can helb ID nroblem data
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Finally- you have (sparse) count matrix(es)

= CellRanger outputs: gives two output folders raw and filtered
= Each folder has three zipped files

a features.tsv.gz, barcodes.tsv.gz and matrix.mtx.gz
a raw_feature_bc_matrix
a All valid barcodes from GEMs captured in the data
a Contains about half a million to a million barcodes
= Most barcodes do not actually contain cells
a filtered_feature_bc_matrix
= Excludes barcodes that correspond to this background
= Contains valid cells according to 10x cell calling algorithm
a Contains 100s to 1000s of barcodes

%h%-$ 1s SRR9264343/outs/raw_feature_bc_matrix

A UNIVERSITY OF g cancer | cambridge
¥ CAMBRIDGE s 500cr | 62

https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Sept22/



Computation tools have specialized data
structures for single-cell analvsis

Feature Primary and Cell Dimension

Metadata|| Transformed Data | Metadata |Reductions
A S .

£$é@@ ' N P

genel
gene2
gene3

rowData

assays ———1 !

Rows = Features

colData

reducedDims
Rows = Cells

SingleCellExperiment

Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html

celll
cell?2
cell3
cells



Following QC reduction, issues can still remain

« Common systematic effects that can obscure biological effects
* Batch effects
e Cellcycle



Harmony

* Harmony : An algorithm that projects cells into clusters based on their cell identity rather than dataset specific
conditions.

* Harmony applies a transformation to the principal component

values. The algorithm then determines if there is a balanced =
quantity of cells from each batch within the clusters. Each cellis onor
then evaluated to see how much its batch identity influences its ® A
PC coordinates. The cells position is corrected by shifting it ® B
towards the centroid of its cluster. ® C _
“g #&" .;'*. s
Dataset | Cell type N X X e:'g-g._“@
000 4 u 4 /I;e until COnvergence\ & ; EEIN
2 0’,‘.0’11%, Clu%”» CIU%’/ e CIU%" % =
o be e s Zog il o2 o R A 4
AL R LA A R
., & .".': -
_ " ger 3 Clusgg, @ ger3 Clusgg, gers Clusg, ol gerd Olusgg
& St e ° 7 5 4 O xppphy”
R et °\ A - *ﬂﬁ
) .. L -
A Soft assign cells to B Get cluster centroids ~ C Get dataset correction D Move cells based on
clusters, favoring mixed for each dataset factors for each cluster soft cluster membership

dataset representation U M AP 1



PC 2

101

Cell cycle has a systematic (but known)
measurable effect on expression patterns

* Characteristic genes have been identified
* Cells can be modeled to estimate cell cycle stage

-10 -5 0 5 10 _'4 (') "1
PC 1 PC 1

Source: https://satijalab.org/seurat/archive/v3.1/cell_cycle_vignette.html
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Which genes should we use for downstream analysis?

Select genes which capture biologically-meaningful variation, while reducing the number of genes which
only contribute to technical noise

(Image Source)

© ° = Model the gene-variance relationship across all
o . : v : B8
s o | ° genes to define a data-driven “technical variation
g g threshold”
2l . S = Select highly variable genes (HVGs) for
IR Oo;gi% =2y downstream analysis (e.g. PCA and clustering)
i | g

Mean of log-expression

&3 UNIVERSITY OF -.'-?-"5:.5' CANCER Cambridge
IS CAMBRIDGE -_% EESEARCH Institute 5/1 6

https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Sept22/



Why do high-dimensional data pose a problem?

In single-cell data we typically have thousands of genes across thousands (or millions!) of cells.

= Interpretation/visualisation beyond 2D is hard.
= As we increase the number of dimensions, our data becomes more sparse.

= High computational burden for downstream analysis (such as cell clustering)

Solution: collapse the number of dimensions to a more manageable number, while preserving

information.
original data space
component space
o Ex -
(] Tl
15—
=
PC1
Gene 2 Gene 1
(Image source)
&8 UNIVERSITY OF 3% cancer | cambridge
mam CAMBRIDGE .0'.‘2#' 5ESEARCH Institute 3/16

https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Sept22/



All downstream analvsis is based on “reduced” data
Principal Components Analysis (PCA)

Data in feature space == Find principal components == Data in principal components space

(Image Source)
= |t's a linear algebraic method of dimensionality reduction
= Finds principal components (PCs) of the data

= Directions where the data is most spread out (highest variance)

PC1 explains most of the variance in the data, then PC2, PC3, etc.

PCA is primarily a dimension reduction technique, but it is also useful for visualization

A good separation of dissimilar objects is provided

Preserves the global data structure

5.3 UNIVERSITY OF
4% CAMBRIDGE

o530,
3% CANCER Cambridge
RESEARCH Ins(ituteg 6/1 6
T UK

https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Sept22/



Common visualization options
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Clustering and Biology: What do you want
to learn from the experiment?

 Classify cells and discover new cell
populations

 Compare gene expression between different
cell populations

28

Source: http://barc.wi.mit.edu/education/hot_topics/scRNAseq_2020/SingleCellRNAseq2020_4slidesPerPage.pdf



UMAP

Main parameter in UMAP is
n_neighbors (the number of
neighbours used to construct the initial

graph). 51
< e
Another common parameter is ) - %
. . . . . P, >;
min_dist (minimum distance between % & levelclass
. o o9 © astrocytes_ependymal
pol ntS) a0 endothelial-mural
& ° interneurons
p % ©  microglia
= Together they determine balance 2} oligodendrocytes
. © pyramidal CA1
between preserving local vs global pyramidal S
structure 51 [
i . o e
= For practical simplicity, we usually o ‘
only tweak n_neighbors, although %
playln.g.wnh both parameters canbe | s s
beneficial
10 5 0 5 10
UMAP 1

Exploring different number of
neighbours that best represent the
biological diversity of cells is recommended.

m;m UNIVERSITY OF .2 cancer | cambridge
B S CAMBRIDGE -..::..{:. LRJESEARCH Institute 14/1 6

https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Sept22/



Is there a “correct” clustering?

Clustering, like a microscope, is a tool to explore the data.

We can zoom in and out by changing the resolution of the clustering parameters, and experiment with
different clustering algorithms to obtain alternative perspectives on the data.

Asking for an unqualified “best” clustering is akin to asking for the best magnification on a microscope.

A more relevant question is “how well do the clusters approximate the cell types
or states of interest?”. Do you want:

= resolution of the major cell types?

= Resolution of subtypes?

= Resolution of different states (e.g., metabolic activity, stress) within those
subtypes?

Explore the data, use your biological knowledge!

Image by Les Chatfield from Brighton, England - Fine rotative table Microscope 5, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=32225637
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Sankey: Macro Subset Dataset

res.0.05 res.0.1 res.0.2 res.0.25 res.0.3 res.0.5 res.0.7 res.0.9



Identifying Cluster Marker Genes

Our goal is to identify genes that are

- differently expressed between clusters
Ve Calculate effect sizes that capture differences
: . in:
- : = mean expression level

louvain
2

[

= rank of expression

TSNE 2

10

CoNonaw

= proportion of cells expressing the gene

23

e These are calculated in pairwise cluster
o -
6 AW ) 5 comparisons.
W . -f‘

0
TSNE 1
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Cell identification has generally been based upon
known marker genes

Plasmacytoid dendritic cells
-,

Progenitor cells
v

10 1

UMAP_2

Naive B cells:.,
0 - St -switched memory B cells

T
"Wy ——Exhausted B cells
Switched memory B cells

Plasmablasts Terminal effector CD8 T cells Y
3 2. zsNoN-Vd2 gd T cells
5 Gimeltsemory CD8 T cells
g S
MAIT cells

Terminal effector CD4 T cells
NaturaL‘k_il r cells

-104

-10 0 10

UMAP_1
Source: https://www.singlecellcourse.org/introduction-to-single-cell-rna-seq.html



®, 10XATAC T

. Chromium Single Cell ATAC libraries comprise double stranded DNA fragments
which begin with P5 and end with P7. Sequencing these libraries produces a standard —
llumina® BCL data output folder. 78 Gel Beads Chromium Next GEM Chip H

Sample
i5:16 bp Index N
" Read IN \
| . | [
- Insert <
PS5 = . Read IN Read 2N Read 2N

Number of S

Sequencing

Description

Read cycles Enzyn

Read1 Insert Sequence 1N 50bp PRI Hoha DE.

i7 index Sample index read 8bp s — ‘ — Sin
i5 index 10x Barcode Read (Cell) 16bp ' _
Read2 Insert Sequence 2N 50bp — -

Denaturation, Linear Amplification |

(opposite end)

Linear Amplification Product
.

- ASAP-seq is to SCATAC-seq what CITE-

. seq is to scRNA-seq. o — T —
i CANCER | CAMBRIDGE - Scale Biosciences — ‘pre-indexing of nuclei S 10x Read 1N St
x| RESEARCH | INSTITUTE P g g~ ouma ' S—

‘:"-w UK

through tagmentation” = 100k nuclei per
10x channel with low number of doublets

10x Barcoded DNA Fragments

Source: 10x Genomics

Source:https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



® 10X MULTIOME (RNA+ATAC

Profiling Different Modalities To Gain Deeper Insights  Dive Deep Where It Matters
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*;‘,“% CANCER
ol RESEARCH
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Open Chromatin

CAMBRIDGE
INSTITUTE

W 9

.: A One cell
. - d
Dual
modalities
o True
/ Linkage
’ 1
Gene Open

Expression Chromatin

-TEA-seq (Transcription, Epitopes, and Accessibility) = Multiome

ATAC

GEX

ATAC

with permabilised cells & CITEseq
Source:https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf

Top differentially
expressed markers
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1GHG1
o
1w

"o
ann
reER
o
POHY

@ subcluster 1 — Memory B cells

@ subciuster 2 — Differentiating
Naive B cells

Source: 10x Genomics

’  Memory B
0
,, cell markers

Differentiating
naive B cell
markers



®_ SPATIAL TRANSCRIPTOMICS

Human spatial atlas

55ul spots -> 1 and 10 cells captured per spot

Developmental Spaﬁal istering)/ classification of glas siide spots Annotation directly on H&E image Captured H&E image from the microscope

ased on their gene expression profile

Spatial heterogeneity
in diseases %/ ) blueprint
tra"s“‘v Source: 10x Genomics

Trends In Biotechnology

Figure 3. Applications for Spatially Resolved Transcriptomics. Three primary kinds of hot issues can be resolved by
spatially resolved transcriptomics: left, discovering spatial heterogeneity of diseases; middle, establishing spatial
transcriptome atlases for the human body; and right, delineating an embryonic developmental and spatial blueprint.

Source: Liao et al. Trends in Biotechnology. (2020) Visium Sp?tial . Capture Area with Visium Gene Expression
Gene Expression Slide 5000 Barcoded Spots Barcoded Spots
Partial Read 1 Poly(dT)
e B UMI

Ll CANCER CAMBRIDGE ]

S RESEARCH | INSTITUTE ]

bl UK O

. : = Source: 10x Genomics

Source:https://bioinformatics-core-shared-training.github.io/SingleCell_RNASeq_Jan23/UnivCambridge_ScRnaSeqIntro_Base/Slides/01_Introduction.pdf



Most single cell methods rely on physical compartmentalization of
cells and barcoding primers

< ) \'\u/‘ “\7“(?/'I 2 [oi2 [Biel @

Single cell / single Microfluidics Chip Droplet-based Microwell-based
well (e.g. Fluidigm) (e.g. 10X & BioRad) (e.g. Takara, CelSee)

Single-cell combinatorial indexing - an alternative means of high
throughput single-cell analysis.

FANS 2500
per well

o | » Combinatorial scaling of throughput
A tdbead * No specialized equipment required

i « Adaptable to a variety or properties %)
£ * |nexpensive to perform

Index 2: PCR based OHSU
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Combinatorial indexing allows for great cost reduction per cell

e Nuclei

@

Isolate Nuclei in lysis buffer with DEPC
Check for RNAse activity
Fix with DSP/methanol

b Distribute nuclei to first plate

a RNA AAAAAA
o ﬁTTTTTT—
2 index1
24
Reverse Transcription adds index1
c
N 10 ] RNA S— A AAAAA
% D0 CONA I —— T T T T T T
5 208 index1 index2
o |83
£ |89

O
*
O

Ligation adds index2

second strand
CONA T T T 7T T
index1 index2

Second strand synthesis, protease digestion

e TTTTT

ROUND 3

index1 index2

Tn5 ®g Tagmentation
g e TTTT T TEE—— aa—
index3 index1 index2 plate index

PCR adds index3 + optional plate index for multiple plates

h  Pool PCR products and Sequence
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Nuclear Oligo Hashing allows both sample labeling and

Impoved normalization

2. 3.

Lyse  Affix well-
Well-  celisto  specific
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nuclei

b /‘\
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l I
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==y
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=
PCR fils gaps
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Separately sequence
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® WHAT PLATFORM SHOULD | USE?

RESEARCH
; UK

‘/% CANCER

CAMBRIDGE
INSTITUTE

Choose protocol based on:

- Throughput (number of cells per reaction)

- Sample of origin

- Cost / Labour / Time limitations

- Gene body coverage: 5’/ 3’ biased or full-length?
- UMI vs no-UMI

- Sequencing depth per cell

Examples:

If you sample is fairly homogeneous — bulk RNAseq

If your sample is limited in cell number — plate-based method

If you want re-annotate the transcriptome and discover new isoforms — full-length
coverage (SMART-seq2, seqWell)

If you are looking to classify all cell types in a diverse tissue - high throughput

If you have only archival human samples — nuclei isolation or 10x fixed RNA profiling



All downstream analysis is based on PCA

reduction of data
Principal Components Analysis (PCA)

X, o
g PC
y °
00 ©
o
) o
O%OOO OOO 0%00 ©o
00 0 & 00 °uPe% 0 rc
0g000° A %
o ©®
D

Data in feature space == Find principal components == Data in principal components space

(Image Source)

= When data is very highly-dimensional, we can select the most important PCs only, and use them for
downstream analysis (e.g. clustering cells)

a This reduces the dimensionality of the data from ~20,000 genes to maybe 20-50 PCs
a Each PC represents a robust ‘metagene’ that combines information across a correlated gene set

= Prior to PCA we scale the data so that genes have equal weight in downstream analysis and highly
expressed genes don't dominate

3B UNIVERSITY OF %% cancer | cambridge
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Making a graph

Nearest-Neighbour (NN) graph:

= cells as nodes O

= their similarity as edges O

In a NN graph two nodes (cells), say A and B, are connected by O
an edge if:

= the distance between them (in e.g. principal component
space) is amongst the k smallest distances (here k = 5) from
A to other cells, (KNN)

. O

= In a shared-NN graph (SNN) two cells are connected by an O O O
edge if any of their nearest neighbors are shared (n.b. in
Seurat this is different)

O

Once edges have been defined, they can be weighted. By default the weights are calculated using the
‘rank’ method which relates to the highest ranking of their shared neighbours.

5.3 UNIVERSITY OF *-(’L'b CANCER | CAMBRIDGE
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Identifying communities/clusters - Louvain

Nodes are also first assigned their own community.

Move nodes
Two-step iterations: ) /_?‘
= nodes are re-assigned one at a time to the community for \"2;’ i
which they increase modularity the most, _— X '
evel
= a new, ‘aggregate’ network is built where nodes are the |
communities formed in the previous step. °.'o/ , '.'j N
This is repeated until modularity stops increasing. }'ﬁ’ky
<) d)
(Blondel et al, Fast unfolding of communities in large
networks)
Level 2
(Traag et al, From Louvain to Leiden: guaranteeing well-
connected communities)
\_/
Move nodes
B UNIVERSITY OF .::%% cancer | camsrIDGE
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t-SNE

Main parameter in t-SNE is the
perplexity (~ number of neighbours
each point is “attracted” to)

= Balance between preserving local vs 201
global structure

leveliclass

= Higher values usually result in more
compact clusters

= But too high can lead to overlap of
clusters, making them harder to
distinguish

© astrocytes_ependymal
endothelial-mural
interneurons

microglia
oligodendrocytes
pyramidal CA1
pyramidal SS

TSNE 2

® © 00

Exploring different perplexity values that .
best represent the biological diversity of
cells is recommended.

-20
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