Skip to content

Launch Setup

Pre-Built Template vs MMCloud Air vs Float CLI

Methods

For this course, we have already set up the full configuration for the pipleines. To submit, go to the MMCloud Opcenter and and launch your designated pipeline.

Launching in MMCloud Air is fully web-based allowing users to launch the pipeline from the web in a GUI.

Launching from the Float CLI gives you the most control. You have full control of the launch, but need to be familiar with the float cli.

Workflow Architecture

MMC Workflow Architecture

nf-core/scrnaseq Setup

GitHub

Launch Methods

  1. Sign in to the MMCloud Opcenter with your given credentials.
  2. Select Job Templates from the left hand panel.
  3. Select Private.
  4. Select the Template for scrnaseq that matches your user name.
  5. Submit!

Step 1: Name and Job Resources

Nextflow generic workflow

Job Name

user<number>-scrnaseq-run

MMCloud OpCenter

mdibl-workshop-opcenter

Storage

mdibl-workshop

Security Group

tbd

Step 2: Parameters

Nextflow run command cli

nextflow run nf-core/scrnaseq -r 2.7.0

VM instance policy for worker nodes

Note

spotOnly can be set for maximum savings

[spotFirst=true,retryLimit=5,retryInterval=300s]

Staged Mount

https://mdibl-workshop.s3.us-east-1.amazonaws.com

Output Bucket

s3://workshop-user<number>/scranseq-output/

Input sample .csv file

Note

Young_Y1_lung_29w sample has been removed. The authors found batch effects in this sample and excluded it in downstream analysis. Might be good to keep in as a teaching tool, but their method of batch detection would need to be incorporated into our workflow, so we're leaving it out.

sample,fastq_1,fastq_2
Young_Y1_kidney_29w,/staged-files-1/data/SRR9320581/Y1K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320581/Y1K1_R2_001.fastq.gz
Young_Y1_kidney_29w,/staged-files-1/data/SRR9320582/Y1K2_R1_001.fastq.gz,/staged-files-1/data/SRR9320582/Y1K2_R2_001.fastq.gz
Young_Y1_spleen_29w,/staged-files-1/data/SRR9320585/Y1S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320585/Y1S1_R2_001.fastq.gz
Young_Y3_kidney_31w,/staged-files-1/data/SRR9320586/Y3K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320586/Y3K1_R2_001.fastq.gz
Young_Y3_kidney_31w,/staged-files-1/data/SRR9320587/Y3K2_R1_001.fastq.gz,/staged-files-1/data/SRR9320587/Y3K2_R2_001.fastq.gz
Young_Y3_lung_31w,/staged-files-1/data/SRR9320588/Y3RL1_R1_001.fastq.gz,/staged-files-1/data/SRR9320588/Y3RL1_R2_001.fastq.gz
Young_Y3_lung_31w,/staged-files-1/data/SRR9320589/Y3RL2_R1_001.fastq.gz,/staged-files-1/data/SRR9320589/Y3RL2_R2_001.fastq.gz
Young_Y3_spleen_31w,/staged-files-1/data/SRR9320590/Y3S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320590/Y3S1_R2_001.fastq.gz
Young_Y3_spleen_31w,/staged-files-1/data/SRR9320591/Y3S2_R1_001.fastq.gz,/staged-files-1/data/SRR9320591/Y3S2_R2_001.fastq.gz
Young_Y4_kidney_34w,/staged-files-1/data/SRR9320592/Y4K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320592/Y4K1_R2_001.fastq.gz
Young_Y4_kidney_34w,/staged-files-1/data/SRR9320593/Y4K2_R1_001.fastq.gz,/staged-files-1/data/SRR9320593/Y4K2_R2_001.fastq.gz
Young_Y4_lung_34w,/staged-files-1/data/SRR9320594/Y4RL1_R1_001.fastq.gz,/staged-files-1/data/SRR9320594/Y4RL1_R2_001.fastq.gz
Young_Y4_lung_34w,/staged-files-1/data/SRR9320595/Y4RL2_R1_001.fastq.gz,/staged-files-1/data/SRR9320595/Y4RL2_R2_001.fastq.gz
Young_Y4_spleen_34w,/staged-files-1/data/SRR9320596/Y4S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320596/Y4S1_R2_001.fastq.gz
Young_Y4_spleen_34w,/staged-files-1/data/SRR9320597/Y4S2_R1_001.fastq.gz,/staged-files-1/data/SRR9320597/Y4S2_R2_001.fastq.gz
Young_Y5_kidney_34w,/staged-files-1/data/SRR9320598/Y5K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320598/Y5K1_R2_001.fastq.gz
Young_Y5_kidney_34w,/staged-files-1/data/SRR9320599/Y5K2_R1_001.fastq.gz,/staged-files-1/data/SRR9320599/Y5K2_R2_001.fastq.gz
Young_Y5_lung_34w,/staged-files-1/data/SRR9320600/Y5RL1_R1_001.fastq.gz,/staged-files-1/data/SRR9320600/Y5RL1_R2_001.fastq.gz
Young_Y5_lung_34w,/staged-files-1/data/SRR9320601/Y5RL2_R1_001.fastq.gz,/staged-files-1/data/SRR9320601/Y5RL2_R2_001.fastq.gz
Young_Y5_spleen_34w,/staged-files-1/data/SRR9320602/Y5S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320602/Y5S1_R2_001.fastq.gz
Young_Y5_spleen_34w,/staged-files-1/data/SRR9320603/Y5S2_R1_001.fastq.gz,/staged-files-1/data/SRR9320603/Y5S2_R2_001.fastq.gz
Old_O1_kidney_88w,/staged-files-1/data/SRR9320604/O1K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320604/O1K1_R2_001.fastq.gz
Old_O1_kidney_88w,/staged-files-1/data/SRR9320605/O1K2_R1_001.fastq.gz,/staged-files-1/data/SRR9320605/O1K2_R2_001.fastq.gz
Old_O1_lung_88w,/staged-files-1/data/SRR9320606/O1RL1_R1_001.fastq.gz,/staged-files-1/data/SRR9320606/O1RL1_R2_001.fastq.gz
Old_O1_lung_88w,/staged-files-1/data/SRR9320607/O1RL2_R1_001.fastq.gz,/staged-files-1/data/SRR9320607/O1RL2_R2_001.fastq.gz
Old_O1_spleen_88w,/staged-files-1/data/SRR9320608/O1S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320608/O1S1_R2_001.fastq.gz
Old_O1_spleen_88w,/staged-files-1/data/SRR9320609/O1S2_R1_001.fastq.gz,/staged-files-1/data/SRR9320609/O1S2_R2_001.fastq.gz
Old_O2_kidney_91w,/staged-files-1/data/SRR9320610/O2K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320610/O2K1_R2_001.fastq.gz
Old_O2_kidney_91w,/staged-files-1/data/SRR9320611/O2K2_R1_001.fastq.gz,/staged-files-1/data/SRR9320611/O2K2_R2_001.fastq.gz
Old_O2_lung_91w,/staged-files-1/data/SRR9320612/O2RL1_R1_001.fastq.gz,/staged-files-1/data/SRR9320612/O2RL1_R2_001.fastq.gz
Old_O2_lung_91w,/staged-files-1/data/SRR9320613/O2RL2_R1_001.fastq.gz,/staged-files-1/data/SRR9320613/O2RL2_R2_001.fastq.gz
Old_O2_spleen_91w,/staged-files-1/data/SRR9320614/O2S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320614/O2S1_R2_001.fastq.gz
Old_O2_spleen_91w,/staged-files-1/data/SRR9320615/O2S2_R1_001.fastq.gz,/staged-files-1/data/SRR9320615/O2S2_R2_001.fastq.gz
Old_O3_kidney_93w,/staged-files-1/data/SRR9320616/O3K1_R1_001.fastq.gz,/staged-files-1/data/SRR9320616/O3K1_R2_001.fastq.gz
Old_O3_lung_93w,/staged-files-1/data/SRR9320617/O3RL1_R1_001.fastq.gz,/staged-files-1/data/SRR9320617/O3RL1_R2_001.fastq.gz
Old_O3_spleen_93w,/staged-files-1/data/SRR9320618/O3S1_R1_001.fastq.gz,/staged-files-1/data/SRR9320618/O3S1_R2_001.fastq.gz
Old_O3_spleen_93w,/staged-files-1/data/SRR9320619/O3S2_R1_001.fastq.gz,/staged-files-1/data/SRR9320619/O3S2_R2_001.fastq.gz

Input parameter .yml file

multiqc_title: 'scRNAseq-workshop'
aligner: 'cellranger'
protocol: '10XV2'
fasta: '/staged-files-1/reference/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz'
gtf: '/staged-files-1/reference/Mus_musculus.GRCm39.112.gtf.gz'
cellranger_index: '/staged-files-1/reference/Mus_musculus.GRCm39-cellranger-index/'
skip_emptydrops: true

Please refer to MMCloud Docs for instructions

Cost Summary

onDemand/Spot Time Cost
OnDemand 3h43m22s $54.773
SpotFirst 3h42m56s $20.473

mdibl/scscape Setup

GitHub

Launch Methods

  1. Sign in to the MMCloud Opcenter with your given credentials.
  2. Select Job Templates from the left hand panel.
  3. Select Private.
  4. Select the Template for scscape that matches your user name.
  5. Submit!

Step 1: Name and Job Resources

Nextflow generic workflow

Job Name

user<number>-scscape-run

MMCloud OpCenter

mdibl-workshop-opcenter

Storage

mdibl-workshop

Security Group

tbd

Step 2: Parameters

Nextflow run command cli

nextflow run mdibl/scscape -r main

VM instance policy for worker nodes

Note

spotOnly can be set for maximum savings

[spotFirst=true,retryLimit=5,retryInterval=300s]

Staged Mount

https://mdibl-workshop.s3.us-east-1.amazonaws.com

Output Bucket

s3://workshop-user<number>/scscape-output/

Input sample .csv file

id,data_directory,mt_cc_rm_genes
Old_O1_kidney_88w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O1_kidney_88w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O1_lung_88w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O1_lung_88w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O1_spleen_88w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O1_spleen_88w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O2_kidney_91w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O2_kidney_91w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O2_lung_91w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O2_lung_91w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O2_spleen_91w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O2_spleen_91w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O3_kidney_93w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O3_kidney_93w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O3_lung_93w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O3_lung_93w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Old_O3_spleen_93w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Old_O3_spleen_93w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y1_kidney_29w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y1_kidney_29w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y1_spleen_29w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y1_spleen_29w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y3_kidney_31w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y3_kidney_31w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y3_lung_31w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y3_lung_31w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y3_spleen_31w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y3_spleen_31w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y4_kidney_34w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y4_kidney_34w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y4_lung_34w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y4_lung_34w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y4_spleen_34w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y4_spleen_34w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y5_kidney_34w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y5_kidney_34w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y5_lung_34w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y5_lung_34w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv
Young_Y5_spleen_34w,/staged-files-1/admin/new-prebake/scrnaseq_out/cellranger/count/Young_Y5_spleen_34w/outs/filtered_feature_bc_matrix/,/staged-files-1/reference/AuxillaryGeneList_mm.csv

Input parameter .yml file

segmentation_sheet: "/staged-files-1/reference/Segmentation.csv"
gene_identifier: "gene_name"
min_cells: 3
min_features: 200
nfeature_lower: 10
nfeature_upper: 0
ncount_lower: 10
ncount_upper: 0
max_mito_pct: 10
vars_2_regress": "nCount_RNA,nFeature_RNA,percent.mt,S.Score,G2M.Score"
features_2_scale: "VF"
scale_method: "SCT"
pcMax: null
integration_method: "Harmony"
resolutions: "0.05,0.1,0.3,0.5,0.7,0.9,1.2,1.5"
makeLoupe: true
eula_agreement: "Agree"

Please refer to MMCloud Docs for instructions

Cost Summary

onDemand/Spot Time Cost
OnDemand 5h36m20s $5.5854
SpotFirst 8h47m50s $4.3996